LIFE CYCLE ASSESSMENT OF A BIO-ELECTRICITY SYSTEM IN GREECE

A. NIKOLAOU¹ and D. DIAKOULAKI²

 Center for Renewable Energy Sources 19th km Marathonos Ave. 19009 Pikermi Greece,
National Technical University of Athens, Dpt. of Chemical Engineering, Lab. of Industrial and Energy Economics, Zografou Campus 15780, Athens Greece

E-mail: nikolaou@cres.gr

EXTENDED ABSTRACT

Energy production from biomass presents environmental benefits, since it is a renewable source and a CO_2 neutral fuel that can be used in a variety of applications (power production, transportation, etc.). However, biomass production and handling may be accompanied by negative ecological side-effects.

In this paper, a hypothetical power production system using biomass from a cardoon energy plantation, was analysed using the methodology of Life Cycle Assessment (LCA), in order to assess its environmental impacts. Fossil energy consumption, greenhouse gas emissions (CO_2 , N_2O and CH_4) as well as SO_2 and NO_X emissions were assessed for the whole system on the basis of 1 kWh of electricity produced.

The methodology of LCA has been developed to evaluate the environmental burdens over the whole life cycle of a product or service taking into account all processes from raw material extraction until waste disposal. According to ISO standards for LCA (14040 – 14043) an LCA comprises of 4 interconnected phases: (1) goal and scope definition; (2) inventory analysis; (3) impact assessment and (4) interpretation.

The system under consideration was divided into three subsystems: (a) biomass production; (b) transportation and storage; (c) power production. The nominal capacity of the power plant was set to 20 MWe, and the biomass required is produced from the cultivation of a total area of 1.270 ha.

The obtained results show that the energy balance of the system is positive and 1 unit of fossil energy is required to produced 2,3 units of electricity. The biomass production stage contributes significantly to the total energy consumption and to CO_2 and SO_2 emissions, the combustion stage to the total CH_4 , N_2O and NO_x emissions, while the contribution of biomass transportation and storage to all parameters considered in the study is relatively small. A sensitivity analysis shows that the efficiency of the power plant has the largest influence on the results, followed by fertilisation and the yield of the energy crop. Transportation distances had a minor influence.

Key words: Biomass, cardoon, power production, life cycle assessment.